ICRC-HIT: A Deep Learning based Comment Sequence Labeling System for Answer Selection Challenge
نویسندگان
چکیده
In this paper, we present a comment labeling system based on a deep learning strategy. We treat the answer selection task as a sequence labeling problem and propose recurrent convolution neural networks to recognize good comments. In the recurrent architecture of our system, our approach uses 2-dimensional convolutional neural networks to learn the distributed representation for question-comment pair, and assigns the labels to the comment sequence with a recurrent neural network over CNN. Compared with the conditional random fields based method, our approach performs better performance on Macro-F1 (53.82%), and achieves the highest accuracy (73.18%), F1-value (79.76%) on predicting the Good class in this answer selection challenge.
منابع مشابه
HITSZ-ICRC: Exploiting Classification Approach for Answer Selection in Community Question Answering
This paper describes the participation of the HITSZ-ICRC team on the Answer Selection Challenge in SemEval-2015. Our team participated in English subtask A, English subtask B and Arabic task. Two approaches, ensemble learning and hierarchical classification were proposed for answer selection in each task. Bag-of-words features, lexical features and non-textual features were employed. For the Ar...
متن کاملAnswer Sequence Learning with Neural Networks for Answer Selection in Community Question Answering
In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of questionanswer pair firstly, and then uses the joint representation as input of the...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کامل